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A set of Jeffery-Hamel profiles (for radial, viscous, incompressible flow) have 
been shown by Fraenkel(l962, 1963) to approximate to profiles in certain two- 
dimensional divergent channels. The stability of a family of these profiles is 
investigated by a numerical solution of the Orr-Sommerfeld problem. Neutral- 
stability curves are calculated in the (R, k)-planes (where R is the Reynolds 
number of the basic flow and k is the wave-number of the disturbance), and fairly 
low critical Reynolds numbers are found. For those profiles that have regions 
of reversed flow, negative wave velocities are found on the lower branch of the 
neutral curve, and also it is found that Rk tends to a finite limit as R 3 co on 
the lower branch. These unexpected results are further discussed and verified 
by independent methods. The relation of the calculations to some experiments 
of Patterson (1934, 1935) is discussed. 

1. Introduction 
Fraenkel (1962, 1963) has shown that a certain set of Jeffery-Hamel (hence- 

forth J.-H.) profiles, which are exact solutions for viscous, incompressible, 
steady, radial flow in a wedge-shaped channel, are good approximations to the 
profiles in certain symmetric, divergent channels with small wall-curvature. 
If a, half the local divergence angle of the channel, varies smoothly and sufficiently 
slowly in a certain range containing a = 0, then the approximate solution appro- 
priate to the local a: and a given Reynolds number? R is uniquely determined from 
the infinite set of J.-H. solutions by the requirement that the stream function 
should be analytic as a function of a. In  this paper we consider the stability of a cer- 
tain family of such flows, including some profiles with reversed flow near the walls. 

In  $2 the validity of the Om-Sommerfeld equation is discussed for wedge- 
shaped channels and the problem selected for computation described. In  $3  
the method of computation is briefly described and its accuracy estimated. In  
4 4 the main results are presented. Neutral stability curves in the (R, k)-planes 
(where k is the wave-number of the disturbance) are given a,nd very low values 
of the critical Reynolds number are found, in comparison with the critical values 
for parallel flow. More unexpectedly, the result was obtained that, on the lower 

t For flow in a parallel-walled channel it is usual to use a Reynolds number based on 
the product of fluid velocity at the centre with channel half-width, but for a divergent 
channel it is better to use a Reynolds number R based on half the volumetric flow rate, 
since this will not vary from station to station down the channel ; and we therefore use such 
a Reynolds number in this paper. 
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branches of the neutral stability curves for those profiles with regions of reversed 
flow near the walls, the eigensolution of the Orr-Sommerfeld equation remains 
viscous as R tends to infinity, in the sense that kR tends to a finite limit. Moreover, 
on these lower branches the wave speed becomes negative, and substantially 
less than the minimum value of the basic velocity. These surprising results are 
further discussed in 5 5. In  $6 a comparison of the stability calculations is made 
with some experimental results of Patterson (1934, 1935) and the conclusion 
reached that most of the available evidence is consistent with the present 
calculations, but that more experiments are needed to make a proper comparison. 

2. The problem for computation 
We may describe a wedge-shaped channel of divergence angle 2a by means of 

co-ordinates [,y defined as follows. Let x,y be Cartesian co-ordinates in the 
physical plane, and let z = x+iy and 5 = (+ir. To define the co-ordinates we 
set x = (b/a) ea6, where b is a real constant with the dimension of length. Note 
that 7 = 0/a, where 0 is the usual polar angle, and that the walls of the channel are 
given by 7 = t- 1. The curve [ = const. is a circle 1x1 = @/a) eat, and 2b is the 
length of an (arbitrarily chosen) circular arc ( = 0, - 1 < 7 < 1 (figure 1). The 
end-points of this arc will be regarded as fixed under the limit (to be introduced 
presently) R -+ 00, a -+ 0 such that 0 < Ra = y < 5.46. These co-ordinates are a 
special case of the more general co-ordinates <, 7 used by Fraenkel(l963). 

FIGURE 1. Illustration of co-ordinates for a wedge-shaped channel. 

Following Fraenkel’s notation we denote the stream function for a general 
flow by Y(6, 7, t )  where t is time. The volumetric flow rate is 2M,  and the kine- 
matic viscosity is v. It is straigh-bforward to obtain the vorticity equation in the 
form 

where 
and t = (b2/M)  7, we obtain, 

D2= i32/a(2+a2/a72 and h = Idx/dC/ = beat. Upon putting Y = M $  

where R = M / v  is the Reynolds number. 



Stability of Jeffery-Hamel solutions 193 

The J.-H. solutions mentioned in the introduction are the steady, 6-indepen- 
dent solution of (2), and in Fraenkel’s notation are denoted by G(q;  R, a). 
In  the remainder of this paper we shall work mainly with the parameters R 
and y where y = Ra, and consequently we write P(v; R ,y )  for G(r;R,a) .  
We denote d P / d y  by$. It can easily be shown from (2) that f satisfies the equation 

f” + 4(y2/R2)f’ + 2yff’ = 0, (3) 

in which a dash denotes differentiation with respect to 7. Then, with the notation 
that f ( r ;  R, y )  -+ w(r;  y )  as R -+ 00, it can be seen from (3) that 

f (? l ;R ,y )  = w(?l;y)+O(y2/R2),  (4) 

and in fact Fraenkel has shown that the agreement is close. For example, with 
y = 4-71 and R = 30 one can deduce from table 1 of Fraenkel’s (1963) paper 
that w differs fromf by less than 1 yo. The parameter y is restricted to a certain 
range -co < y < y3 in Fraenkel’s theory, where y > 0 corresponds to outflow 
and y < 0 to inflow; the value of y3 depends on R. For example, with R= 10, 
y 3 -  - 5.05; with R = 20, y3 + 5.4; with R = CO, y3  = 5-46. Within the range 
-a < y < 5.46, w ( 7 ; y )  is an analytic function of y, but at y = 5-46, 
becomes infinite, although w itself remains finite. The functions w(q; y )  represent 
a convenient family of velocity profiles for the stability calculations; only the 
outflow solutions (0 < y < 5.46) will be considered here because their Stability 
characteristics are certain to be more interesting than those of the inflow solu- 
tions. 

In the usual way we superimpose a small disturbance @F;and thus set 

$ = P(r;  R, 7) + $At, r ,  7; R, y ) ;  ( 4 4  

and upon substituting in (2) and neglecting terms of the second degree in $1, 
we obtain 

We approximate to this (virtually intractable) equation on the basis of the 
limit yIB -+ 0, which is presumably legitimate, at  least €or 161 < 00, if either 
R -+ co with y fixed (0 < y < 5.46), or if y -+ 0 with R fixed. If y / R  is not small 
(its largest value in the present calculations is about 0.4) then this approximation 
amounts to the assumption of ‘nearly parallel flow’ made in most stability 
calculations; it is likely to be neither better nor worse in the present context 
than in stability calculations for jets (see, for example, Howard 1959, who 
discusses this point in more detail). Under the limit y/R -+ 0, (5) becomes 

and with the usual substitution 

el([, 7, r )  = $(7) eik(c*T) (k real and 2 0 ) ,  (7) 
13 Fluid Mech. 24 
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(6) reduces to the Orr-Sommerfeld equation 

$iv - 2k2$“ + k44 = ikR [ { ~ ( y ;  7) - C> {$” - k2$) - ~ “ ( 7 ;  y )  $1. (8 )  

Following Lin (1945,1955) and Thomas (1953), we assume that the most unstable 
eigenvalue cis associatedwithaneigenfunction $ which is even in 7. The boundary 

19) 
conditions are then 

The main computational problem tackled was to find (complex) eigenvalues c 
for the Orr-Sommerfeld equation (8) under boundary conditions (9), when 
R, k and y (all real) were specified. 

Consider now the case of a channel with curved walls. If the curvature is 
sufficiently small, and with R > 15 (say), Fraenkel’s theory and calculations 
show that the profiles w(7;y)  are good approximations to the actual profiles. 
Hence if we think of R as given, as y increases from zero the profles given by 
w(7;y)  approximate to those at successive stations of a channel whose diver- 
gence angle is slowly increasing. 

A general description of the profiles w(7;y) is as follows. For y = 0, there 
results w(y ; 0) = (9) (1 - y2), i.e. the usual Poiseuille flow. As y increases, the 
curvature of the profile changes, until at y = 1.80 points of inflexion occur at the 
walls. As y continues to  increase, the points of inflexion move inwards towards 
the centre of the channel. For y = 4.71 we have the separation profile for which 
w’ = 0 a t  the walls. For 4-71 < y < 5.46, there are regions of reversed flow at 
each side of the channel. The flow cannot be analytically continued by any 
symmetric J.-H. function beyond y = 5.46 owing to the singularity in w as a 
function of y. It should be mentioned here that profiles with regions of reversed 
flow are not of purely academic interest for they have been actually observed 
(see Patterson 1934). 

Different formulae are required for w in different ranges of y. These formulae 
are given by Fraenkel (1963, 1962) and some details are given in the Appendix. 
The two different formulae given are for the same analytic function of y. It 
will be noted that these formulae do not give w(7;y)  explicitly in terms of y, 
and in our calculations y actually appeared as a result of the choice of another 
parameter. This accounts for the strange values of y which will appear later, in 
the results. 

Typical profiles are shown in associationwith their neutral curves infigures2,3, 
4 and 5, points of inflexion being marked by the letter S. 

#( - 1) = $/( - 1) = # ( O )  = 4”‘(0) = 0. 

3. Computation of the Orr-Sommerfeld problem 
3.1 Method 

Let us first recall that the problem selected for computation was the Orr- 
Sommerfeld equation (8) together with the boundary conditions (9) for even 4. 
If R, k and y (all real) are specified this is an eigenvalue problem for c, which will 
be complex in general. Writing c = c,+ic,, we note that a disturbance of the 
form (4a) is amplified or damped with time according to whether c, is positive or 
negative. If  any eigenvalues exist with positive ci then the flow is regarded as 
unstable to infinitesimal disturbances. 
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In  our approximation the parameter y specifies the basic flow, and the primary 
aim is to find Rcrit as a function of y, Rcrit being the lowest value of R for which an 
unstable (ci > 0) mode exists. If we fix y, there is in each (R, k)-plane a neutral 
curve on which the imaginary part of the most unstable c is zero. It is possible to 
find Rcrit by first finding these neutral curves. We are also interested in the 
behaviour of the eigenfunctions and eigenvalues as R + m on both the upper 
and lower branches of the neutral curves. 

The eigenvalue problem was reduced to a matrix eigenvalue problem by the 
finite difference technique used by Thomas (1953) and by Kurtz & Crandall 
(1962). By means of the transformation 

g = q5 - &h2q5” + &3h4$iv, 

where h is the step length in 7, the truncation error in the representation of the 
derivatives of g5 by up to fourth central differences of g is reduced to O(h6) for 
4’’ and O(h4) for q5iv, that is to one order in h2 better than by using merely fourth 
differences of q5. 

The eigenvalue problem is then reduced to solving an equation of the form 
det [A(k ,  R, y ;  c)]  = 0 where [A]  is a matrix of complex elements, of the five- 
band type except for some extra elements for the boundary conditions, and c 
is the required eigenvalue. A programme to evaluate this determinant efficiently 
was written; also a root-finding routine which, given three values of c near to a 
root, iterates (by means of a complex quadratic curve) to find the root to a selected 
degree of accuracy. 

Starting from a value of c given by Thomas for y = 0 (Poiseuille flow), R = 1667 
and k = 1 (Thomas’s R being 2500) it  was possible to find c for all relevant values 
of the parameters y, k and R by changing them in small steps. Hence the neutral 
curves in the (R, k)-planes (for fixed y )  could be drawn by interpolating to values 
of R and k for which c, = 0. In  fact, an automatic procedure for tracing the neutral 
curves was programmed, requiring merely two points near the upper branch to 
start. 

Contour plots of the modulus of the determinant may be made in the complex 
c-plane (for fixed values of y ,  R and k) in order to locate zeroes. To confirm that 
the value of c being traced was that of greatest imaginary part, extensive plots 
were made for a Poiseuille-flow case and for the case y = 3.07, R = 1667 and 
k = 1. No evidence was found of any roots with greater ci, though there were 
many with smaller ci. There is also a check on this point for small k R  by a method 
given in $5. 

3.2. Accuracy and checks 

If w(7; y )  is replaced by a constant wo, it can be shown that the eigenvalues are 
givenbyc = wo-i(s2+k2)/kR, wheresisarootoftheequationstans = -k tanhk. 
This was used as a first check. 

For y = 0 (Poiseuille flow), Thomas (1953) gives values of c, for various R 
and k, to 4 decimal places. These results were reproduced by the present pro- 
gramme for the cases R < 2000 using 40 steps. For larger R, Thomas’s results 
were consistent with ours for 20 and 40 steps on the assumption of an error 
proportional to h4. With 40 steps it is estimated that, for the cases computed, OW 

13-2 
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programme obtained c correct to 4 decimal places when kR < 2000, and, taking 
into account the rate of variation of cz with k and with R, the possible error in k 
for a given R on the calculated curves was estimated to be less than 0.002 in 
general. The critical values of R were estimated to have an error of less than 

1.2 

1.0 

0.8 

0.6 

-? 

0-5 %. 

of the results. 
Other checks will appear 

- 

- 
c =  040 

- 

I I I 

4. Main results 

The neutral curves for y = 

4.1. 

in the course of the presentation and development 

The critical Reynolds number 

1.09, 3.07, 4.71 and 5.45 are shown in figures 2-5, - 
together with the corresponding velocity profiles. Limiting values of k , c  and 
kR as R + 00 (on these curves) are marked, and these are explained in $4.2. 

l.-l 1 &it = 880 

Velocity profile Neutral curve 

FIGURE 2. Velocity profile and neutral curve for y = 1.09. 

1.75 r = 215 

c = 0.71 

\G= 046 

1000 2000 R 3000'"'' 

= 0433 
= 1.11 

-00 

Velocity profile Neutral curve 

FIGURE 3. Velocity profile and neutral curve for y = 2.06. 

1.0 

0 5  c = 0.089 
kR = 84 

- I  -0.5 7 0 0 100 200 300 R 400 
Velocity profile Neutral curve 

FIGURE 4. Velocity profile and neutral curve for y = 4.71. 
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.3t f 
I = -- 072 

kR = 279 

c- -0.737 
kK -. 28.4 

0 50 100 150 K 200 

Velocity profile Neutral curve 

FIGURE 5 .  Velocity profile and noutral curve for y = 5.45. Here, 011 the neutral curve, 
c is the wave velocity and g is the group velocity. 

It will be noticed that the value of Rcrit descends drastically as y increases. 
The neutral curves shown are a selection of ten actually computed and a graph 
of Rcrit vs y is shown in figure 6 for y between 2 and 5.45. This diagram is trans- 
lated into the (R, a)-plane in figure 7. Some experimental results are also marked 
in figures 6 and 7, and these are discussed in $6. 
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FIGURE 6 .  R,,, versus y (= RE), with some results of Patterson's experiments. Observed 
by Patterson : - - - - symmetric flows; - unsymmetric flows. 

For y = 0 (Poiseuille flow), we know from the calculations of Thomas (1953) 
that Rcrit (R = M / v  here) is about 3910 for y = 0;  it decreases to 12.8 for y = 5-45. 
At this stage it is of the same order of magnitude as Rcrit for two-dimensional 
jets (see, for example, Howard 1959). There is here a very striking decrease; 
for example, if we had a portion of channel with the semi-angle CL equal to 0.01 
radians, the flow would become unstable at  about R = 215, compared with 
R = 3910 for a parallel-walled channel. 
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FIGURE 7. R,, verms il, with some results of Patterson’s experiments. 
Observed by Patterson: - - - - symmetric flows; ~ unsymmetric flows. 

4.2. The neutral curvesfor Iarge Reynolds number 

(i) On the neutral curves (figures 2-5) there are shown values of c and kR at 
selected points, and limiting values of c,  k and kR as R -f 00. The limiting values 
could not, of course, be obtained directly from the neutral-curve calculations: 
where kR + 00 they are related to solutions of the inviscid Rayleigh problem 

(ii) The most interesting and unexpected of the limits shown on the neutral 
curves is that for the lower branch in figure 5, for y = 5-45. This is typical of the 
lower branches when y > 4.71, that is when the velocity profile has reversed 
flow near the walls. The eigensolution remains viscous as R -f 00 along the lower 
branch (that is, kR tends to a finite limit), and the wave speed c, tends to a nega- 
tive value which is substantially less than the minimum value of the basic 
velocity. The curve c,. = 0 in the (R, k)-plane for y = 5.45 is shown in figure 5, 
and it is seen that amplified (ci > 0) waves with negative wave velocity (c, < 0) 
occur only when R > 15, as compared with Rcrit = 12.8. One would not neces- 
sarily expect a physical realization of these ‘backward’ waves since, according 
to our calculations the flow would have already become unstable when they are 
possible. In any case, in thinking of the propagation of an actual physical 
disturbance, presumably the group velocity g = d(kc,)/dlc is the more appropriate 
measure of its speed of movement. This has been calculated on the neutral 
curve for y = 5-45: for R = 50, g = 0.09; for R = 100, g = -0 .26 ;  for R = 200, 
g = - 0.41. Thus, on the basis of a group velocity, actual physical disturbances 
moving upstream seem even more unlikely. 

In  view of the finite limiting value of kR, the theorem for the Rayleigh problem 
that wmin < c < w,,, need not hold in the limit as R + GO; nevertheless the fact 
that the wave velocity lies outside the velocity range of the basic flow seems 
surprising a t  first sight and so these results were later made more precise and 
confirmed by a method described in 5 5.  
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(iii) In  connexion with the limits on the lower branches, it should be re- 
membered that Lin in his fundamental papers (1 945) and again in his book (1 955) 
gives an asymptotic analysis of the neutral curves for general symmetric velocity 
profiles in a channel with (in our notation) w‘ > 0 in - 1 < 7 < 0. It follows from 
Link work that along the lower branch as R -+ co the eigensolution tends to 

$ K W ,  c = o ,  k = 0 ,  (12) 

which is the well-known ‘trivial’ solution of the Rayleigh problem; and these 
limits are marked on the lower branches in figures 2 and 3, for which the corre- 
sponding profiles fulfil the conditions assumed by Lin. The limits c +  0, 
kR -+ 00 on the lower branch of figure 5, which is the neutral curve for the 
separation profile, are the only ones possible if these limits are to vary in a con- 
tinuous manner with y.  However, when w’( - 1)  < 0, Lin’s method is clearlynot 
applicable as it stands (see, for example, Lin (1955), equation 3-6-12), and we 
might therefore expect some sort of transition in the asymptotic behaviour of 
the neutral curve when w’( - 1) becomes negative. Also, on general grounds, we 
would no longer expect the eigenfunction q5 to tend to w as R -+ 00 when regions 
of reversed flow exist, for this would be a more oscillatory eigenfunction which 
would not be expected to  be associated with the most unstable eigenvalue. 

(iv) For the limits on the upper branches when y < 1.80, that is when no 
point of inflexion occurs in the basic velocity profile, it follows from Lin’s analysis 
that the eigensolution tends to (12) as R 3 00; and the computed values showed 

steady decrease in c and in k as R was increased, although they could not be 
calculated very close to the limit because the programme becomes increasingly 
inaccurate as ICR is increased. 

3.0 4.0 5.0 5.5 
0 

1.5 2.0 
Y 

FIGURE 8. k,, obtained from the Rayleigh problem with c = w,. 

(v) We now consider the upper branches when y > 1.80, that is when there is a 
point of inflexion S(7 = qs, w = w(ys,  y )  = w,) in the velocity profile. As is well 
known (see Lin 1955, §8.2), if we substitute c = w, in the Rayleigh problem 
(11) and regard the wave-number k = k, as the desired eigenvalue, then a real 
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positive k, does in fact exist, It is then to be expected that, as R -+ 00 along 
the upper branch of the neutral curve, we shall have k --f k, and c -+ w,. Lin 
(1945, Part 111) has also shown that such behaviour is to be expected, from his 
asymptotic analysis of the neutral curve, although his proof holds only for small 
w, and w’( - 1)  > 0. 

The solution of the Rayleigh problem was computed as follows. For prescribed 
y and with c = w, a series of values of k near k, was estimated from the numerical 
results for the Orr-Sommerfeld problem. The Rayleigh equation, with initial 
conditions q5( - 1) = 0, q5’( - 1) = 1 was then integrated from 7 = - 1 to 7 = 0 
by a Runge-Kutta process; and k, was found by interpolation, from the require- 
ment that q5’(0) = 0. The values of k, and w, were found to agree well with the 
values of k and c for large but finite R from the neutral-curve calculations in the 
whole range 1.80 < y < 5.46. For example, with y = 3.07, w, = 0.901, and with 
c = w, the Rayleigh problem gave k, = 2-16, while the neutral curve calculation 
gave c = 0.903, k = 2.164 at R = 3200. A graph of vs y is shown in figure 8. 

5. Further discussion of the lower branch 
5.1. Limiting values of kR and c 

If k = O(R-1) as R -+ co, the limiting differential equation is no longer the Ray- 
leigh equation but 

qP = ih{(w - c )  q5” - w“$}, where h = lim kR. (13) 
R+W 

With boundary conditions (9), equation (13) may be regarded, if h and y are 
given, as an eigenvalue problem in c. The relevant question is: for a given y ,  
which real values of h (if any) will produce an eigenvalue c with ci = 0, and what 

140 

100 

A0 

60 

Y 

0.6 

0.4 

- ero 
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0 

FIGURE 9. Limiting values of kR and of c as R 3 co on tho lower branch, 
denoted by A,, and era. 
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then is the value of c,? A modification of the programme for the Orr-Sommerfeld 
problem was used to solve this problem. In figure 9 the resulting values, A, 
and c,,, are plotted against y. These were found to agree well with the neutral- 
curve calculations for the lower branch and large but finite R.  For example, 
for the case with y = 5.45: for R = 503.9 and k = 0.0562, Rk = 28.3 
and c = - 0.7347 + 0 . O O O O i ;  for R = 1103 and k = 0.0257, Rk = 28.4 and 
c = - 0.7365 + 0-OOOOi;  while the limiting values calculated from equation (13) 
were found to be A, = 28.41 and cro = -0.7369. 

5.2. Eigensolutions for small kR 
In relation to the negative values of c, obtained on the lower branches, i t  is of 
interest to study the solutions of the Orr-Sommerfeld equation (8) for small k. 
We shall not at  first restrict this study to even eigenfunctions, but will use the 
more general boundary conditions 

(14) 

It will be shown below that for a given velocity profile w there appears to be a 
set of eigensolutions with the property that ci N O(k-l)  as k --f 0 with R fixed. 
The existence of negative c, for the least stable of these eigensolutions is shown for 
small kR, for certain types of velocity profile. 

The method is prompted by the observation that if in (8) we let k -+ 0 with 
R and c bounded the differential equation reduces to = 0, which has no 
eigensolutions. The most probable way out of this anomaly is that c N O(k-l) 
for k -+ 0. We are thus led to try the expansions 

$(-1)  = $‘(-1) = $(1) = $’(1) = 0. 

dn) = Cp’ik + CP) + cin’k + . . . 
$(n)(q) = $F)(q) + k $ P ( q )  + k2$in’(q) -I- . . . 

(15) 

(16) 

where n is the label of the nth eigensolution of (8) with boundary conditions (14). 

(17) 

(18) 

Substituting in (8) and equating powers of k, we obtain 

$$n)iv + iR@) $hnPf = 0 

&)iv + iRc$n) $PIff = iqw$$W - ,in) $p)“ - wff$;) 0 
and in general 

where the explicit form for the function F, can easily be found but is not required 
here. 

We first note the eigensolutions of (17) with boundary conditions (14), which 
may be expected to approximate to the eigensolutions of (8) for small k.  For 
even eigenfunctions they are given by 

(20) $$””’ = cos A,  q - cos A,, 

where A Z p = ( p + 1 ) n  for p = O , 1 , 2  ,..... 
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For odd eigenfunctions they are given by 

$(22J+1) = 7 sin hzp+1- sin Azp+17, (21 )  

where the A2p+l(p = 0 , 1 , 2 ,  . . .) are the positive roots of the equation tan h = A. 
In each case the appropriate eigenvalue is 

It can easily be seen that the least stable of the eigenvalues (22 )  is cho) = - inZ/R, 
and this is associated with the even eigenfunction 

$2) = cosny+ 1 (33 )  

in accord with the assumption made in 9 2 .  
Since iRcin) is real, the operator consisting of the differential operator 

and the boundary conditions (14 )  may be shown to be self-adjoint. For a self- 
adjoint operator 64 we have the general result that 2’4, = Pm has a solution if 
and only if F, is orthogonal to every solution Z of 22 = 0. In  our case, with 
cr) specified, there is only one solution $6“) to  the equation 9 2  = 0, and so 

is the corresponding condition for $g) to be a solution of (19). Alternatively, the 
necessity for the condition (24 )  is easily shown by multiplying (19 )  by $6”) and 
(17 )  by @, integrating from 7 = - 1 to 7 = 1 ,  and subtracting. 

Since we are interested in the least stable eigensolution, we apply condition 
( 2 4 )  with n = 0 and for m = 1 this yields, after some partial integration, 

The function $40) may now be found by the method of ‘ variation of parameters ’ 
from equation (18 ) ,  and the process extended. But the series for c proceeds in 
powers of k and of kR and on the neutral curve kR is too large for only a few 
terms to be useful. Nevertheless, some information may be obtained from just 
the f i s t  two terms of the series (15 ) .  If c is the least stable eigenvalue we have, for 
small kR, 

ci  = cJO)/k+ O(kR) = - +/kR + O(kR) ,  

C ,  = c$”+ O(k2R2) .  

I t  should be noted that cia) is independent of R, so that for a given profile c, 
tends to the same value as k -+ 0 for all values of R. The above values were found 
to agree closely with eigenvalues calculated from the main eigenvalue programme 
described in $ 2 .  For example, with y = 5-45, R= 200 and k = 0.001 the main 
programme gave c = - 1.3033 - 49,3353, and a calculation of cia) from (35 )  by 
numerical quadrature gave cia) = - 1.3034 while (n2/kR) = 49-348 in this case, 
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It was observed (from figures from the main programme) that c, always 
increases with k for any fixed R, and so it appears that the quantity cia) is the 
minimum value for cr, and is related to the appearance of the negative values of 
c on the neutral curves. It is fairly easy to see from (25 )  that cia) is more likely to 
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FIGURE 10. The broken curve shows the function $f'q5")"+ 2($h0)')2. The continuous lines 
show the function ~ { $ ~ ~ ) q 5 ~ ~ ) " +  2($6°")2} for y = 5.45 and y = 3.07, showing how the inte- 
gral of this function changes sign. 
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FIGURE 11. Values of c,  at k = 0. 

be negative when the velocity profile w has regions of reversed flow. Graphs of 
q5do)q5Jo)" + 2(9d0)')2 and of this function multiplied by w are shown in figure 10, 
and values of c, at k = 0 calculated from (25) are shown in figure 11 plotted against 
y. This goes some way towards explaining the negative c values; but shows 
nothing of the critical role of the sign of w'( - 1)  indicated in $4.2. 
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5.3. Some linzitiny eigenfunctions 

Some limiting eigenfunctions as R -+ 00 on the lower branches were computed 
by integrating equation (1 3) once to give 

q5"' = ih((w - c )  4' - w'@} i const., ( 2 6 )  

and since $'(O) = #"(O) = 0 and also w'(0) = 0 ,  the constant is zero. Hence, 
if we specify y and insert the appropriate values A, and cTo for A and c, and starting 
with q5 = #' = 0 at 9 = - 1 integrate equation (26) by a step-by-step process 
up to 7 = 0, we generate the eigenfunction. This also gives another check on the 
values of A, and c,,, for we should find 9' = 0 at 7 = 0. 

This was done by a Runge-Kutta process, and the values of A, and cTo shown 
in figure 9 were confirmed. Graphs of the real and imaginary parts, #, and Qfi, 
of q5 are shown in figure 12 for y = 5.38 and y = 4-92. These were calculated with 
q5" ( -  1 )  = 1, a purely arbitrary condition chosen for convenience. It appears 
that as y approaches 4.71 from above the eigenfunctions approach w(7; 4.71) 
as expected. Actually, the real part of the eigenfunction differs very little from a 
multiple of w(7; 4-71) for all calculated cases in the range 4.71 < y < 5.46, 
although the imaginary part changes more rapidly with y. 
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FIGURE 12. Limiting eigenfunctions aa R + m along the lower branches. These eigen- 
functions were calculated with the (arbitrary) condition $"( - 1) = 1 + i O .  The broken line 
shows w(v; 4.71) scaled to be equal to $r for y = 4.92 at 71 = 0. 

6. Experimental evidence 
Patterson (1  934, 1935) performed experiments on two-dimensional flow 

in a divergent channel in which the semi-divergence angle a gradually increases 
from zero up to about 0.5 radians. Although these experiments were not per- 
formed to investigate stability, a limited amount of information may be gleaned 
from the results. 
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Fraenkel (1963) has shown that the velocity profiles observed by Patterson 
at R( = M / v )  = 17.5 are closely approximated by the family w(7; y) for values 
of y up to 4-34. From the point of view of the present stability calculations, 
these flows fall into our calculated stable region in the (R, y)-plane (figure 6) 
or equivalently in the (R, u)-plane (figure 7), and so these observations are con- 
sistent with our calculations. 

Before discussing some other results of Patterson we should recall that the 
solutions w(7; y) extend only as far as y = 5.46. At y = 5.46 there is a singularity 
in our approximate solution w(7; y )  and the steady-state solution near y = 5-46 
and for y > 5.46, if it  exists, is not known. We expect that if a steady-state flow 
exists for y > 5.46, it  may be different in nature €rom the symmetric type 
preceding it, but of this we are not certain. For R = 28.4, y 1 4 . 5  and for 
R = 37.6, y fi 5.5, Patterson’s photographs show a departure from laminar 
symmetric flow to laminar unsymmetric flow, with separation of the main 
stream from one wall. For lower values of y the flow appears to be nearly sym- 
metric although we do not know whether the profiles are close t o  the family 
w(q; y) as Patterson did not measure profiles for these Reynolds numbers. It is 
impossible to locate a precise value of y at  which the flow starts to become un- 
symmetric. This is indicated in our figures 6 and 7. 

Patterson reports that this flow pattern, of a symmetric laminar flow up to 
a certain point in the channel and then an unsymmetric laminar flow, remains 
steady, once it is established. It could be regarded, perhaps, as coming into 
existence for one or both of two reasons: either because the symmetric flow 
which is theoretically possible for y up to 5.46 is unstable at some lower value 
of y (note that our even $(a) produces an anti-symmetric disturbance velocity 
parallel to the stream); or because of a basic property of the exact steady-state 
solution, linked with the singularity of w(7; y )  at y = 5.46. It is obviously very 
difficult to distinguish between these possibilities by any experiment at a Rey- 
nolds number close to 12, which is the value at the intersection of the stability 
boundary and the boundary y = 5.46, because we would be trying to locate a 
transition in a rather small range of y. For example, at  R = 20 the flow becomes 
unstable at  y = 5.1 by the calculations, but the singularity in the approximate 
solution is at  3’ = 5.46. In any case, owing to the approximation made in the 
stability calculations of neglecting terms in y/R the calculations in this region 
of the (y,  R)-plane may not be meaningful. Also, the effects of wall curvature on 
the stability have been completely neglected. Therefore we cannot take Patter- 
son’s results to  be very significant in the context of our stability problem. 

Nevertheless, on the supposition that the occurrence of unsymmetric flow is 
linked solely with the singularity at  y = 5.46, figure 4 of Patterson’s (1934) 
paper would be distinctly puzzling. For R = 17.2 this shows laminar symmetric 
flow up to y == 6 and probably up to y 1 8.5, though the detail is not clear and 
there could be the beginnings of fluctuating disturbances for y > 6. There is 
certainly no transition to unsymmetric flow near y = 5.46. We must conclude 
that there is some basic difference in the situation here. It could be that the 
mechanism of transition to unsymmetric flow is in fact related to the infinitesimal 
instability of our calculations, and that at R = 17.2 the motion is truly stable 
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for y up to about 8, although our analysis holds only up to y -5.46 and shows 
instability a t  y = 5.3. However, our various approximations are highly question- 
able here and i t  is possible that the true stability boundary calculated for the 
true velocity profiles should be higher at its lower end than shown in figure 6. 
Obviously more experiments are needed. 

It would, for example, be informative to perform an experiment in a channel 
where a increased slowly to a small value a,, and then remained constant for a 
considerable length of channel. If R were gradually increased we should expect 
a sequence of the J. -H. profiles to be exhibited in the straight-walled portion 
of the channel, and then we would expect instability to occur when R reached 
a certain value. For example, with a1 = 0.01 the flow becomes theoretically 
unstable when R = 215. The value of y would then be 2.15 in the straight- 
walled part, and we could distinguish between any observed instability and 
between the possible transition a t  y fi 5.46. The relation between experiment and 
our calculations should, of course, be better the smaller the value of ax, since the 
neglected terms are O(y/R)  = O(a,) here. It would be interesting to see whether 
any regular oscillatory disturbances were set up, or whether the whole straight- 
walled portion became turbulent, or whether the flow changed rapidly over to 
an unsymmetric form at a certain value of R. 

This work was initiated at Imperial College where the author is a part-time 
student. Thanks are due to Mr L. E. Fraenkel for supervising the work, to Dr 
J. T. Stuart for suggesting the use of equations (13) and (26), and to Dr A. W. 
Gillies and Professor R. S. Scorer for their interest; also to the staff of London 
University Computing Centre for their help. 

Appendix 

J.-H. I solutions, 0 < y 6 2.82 

The formulae for  the velocity profiles 

We may specify m in the range 0.5 d m < 1 and find a by solving 

3 sn2 (alm) dc2 (alm) = 4m- 2. (A 1) 

p = 2E(alm)-a-sn(alm)dc(alm)+asn2(alm)dc2(alm), (A 2) 

we find Y = Gap, (A 3) 

w ( r ;  Y) = {a/p}{sn2 (alm) dc2 (alm) -sn2 (arlnz) dc2 (aylm)}. (A 4) 

Then, with 

and 

J.-H. 111, and J.-H. 112 solutions, 2.82 < y < 5.46 

to 0.57 and we then find b as the solution of 
We may specify m which first decreases from 1 to 0.5 and then increases again 

3mcn2(blm) = 2m- 1 (A 5 )  

in such a way that cn(b1m) increases as m varies as described above, while 
0 < b G 2 K .  
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Then with p = E(blm) - bdn2 (blm) 

we find y = 6bp 

and N r  ; Y) = {mb/p){sn2 - sn2 (by IW). 
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